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Are Layered Two-Dimensional Quasicrystals 
Periodic in the Third Direction? 
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"Two-dimensional" quasicrystals have generally been believed to be 
quasiperiodic in the XYplane and periodic in the Zdirection. This is not 
necessarily the case. A layered material with equidistantly spaced layers and a 
"random tiling" two-dimensional quasicrystal in each layer is shown to exhibit 
delta-function diffraction spots even when the phason strain fields in different 
layers are completely uncorrelated. Surprisingly, such a Z-aperiodic quasicrystal 
shows true c~-peaks, while a more ordered Z-periodic quasicrystal shows less 
sharp, power-law-decaying peaks. 
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The only experimental justification for the general belief that "two-dimen- 
sional" quasicrystals are periodic in the Z direction is the fact that their 
diffraction patterns exhibit sharp peaks which fill layers equidistantly spaced 
in Z. This experimental fact alone, however, is not sufficient to conclude 
the existence of periodicity in the Z direction. At a first glance, one would 
suspect that the absence of correlations between the layers would destroy 
peak sharpness. This would be the case if arbitrary rotations or translations 
in the XYplane were to occur. However, if the only disorder is associated 
with the phason mode, correlations between layers are not required for 
peak sharpness. This fact will be shown below in the framework of a 
layered tiling model. The result, however, is believed to be more general 
and could be obtained without requiring any tiling model assumptions. 

The description of the model follows. The spacing between the layers 
in the Z direction is c. Atoms in every layer are situated on the sites of a 
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rhombic tiling. Any rhombic tiling is known to be presented as a projection 
of a two-dimensional lattice surface in a higher-dimensional space ~D onto 
a tiling plane R~, which is the plane of a layer. The task of averaging over 
the statistical ensemble of rhombic tilings (henceforth by ( . . . > )  can be 
performed in a continuous limit. (1'2) Specifically, the deviation of the strip 
from the plane ~ is described by a continuous phason strain field 
h(xlj , Z) ~ ~D 2 where N~ 2 is the space perpendicular to N~ and z is an 
integer used to label the layers. The diffraction pattern of the layered 
quasicrystal will be calculated in the random tiling limit, (1-6) i.e., it will be 
assumed that all configurations of the tiles are nearly degenerate and, 
therefore, nearly equiprobable. This equiprobable ensemble is described by 
Elser's random tiling hypothesis, (1) which has not been proven analytically 
but has been confirmed by various computer simulations. (3-6) According to 
the hypothesis, the most probable (typical) configuration is quasiperiodic 
on average and possesses some high symmetry. More specifically, the 
typical two-dimensional lattice surface in Nz) has an average slope 

l im m a x  (Ih(xll)l)/xtl = 0 
Xl] ~ oo Xll 

although the deviation h(Xll ) e ~3 is unbounded: <h2) oc ln(xll ). The plane 
~ near which the surface fluctuates is selected so that the corresponding 
tiling has a rotational symmetry, octagonal, decagonal, and dodecagonal 
symmetries being found in various metallic alloys. 

The diffraction intensity I(q, qz) is given by 

I(q, qz)=~ (exp(iq(r~-r'z,)+iq~(z--z'))> (1) 

where q and q~ are the JfY and the Z components of the diffraction vector, 
respectively, and the sum is taken over the coordinates of the tiling sites r~ 
and r'z, and over all layers z 
is the same, the diffraction 
qz = 2tom~c, where c is the 
becomes 

and z'. Since the spacing between all the layers 
peaks will be expected to occur in the planes 
interlayer spacing. For these qz the intensity 

The internal sum is calculated by lifting to Nz~ and making use of the 
continuous approximation in the usual manner: 

I ( q ) - -  2 E 2 dZx -LzLxLy  I~(Ql)l  f FQ(x)exp[i(q-Qjl)x] 
Q (3) 

1 1 
FQ(x)=~z z ~ exp {--~Q~_<[h(x ,z) -h(O,O)]2>} 
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where x 6  N~; Q 6  RD are the reciprocal lattice vectors of the hyperlattice 
and qS(Q• is the Fourier transform of the strip form factor. [The form 
factor is 45(x•  inside the strip, 4 5 ( x l ) = 0  outside the strip.] The 
anisotropy of the phason Debye-Waller factor FQ is neglected for clarity. 
In the general case (not necessarily random tiling limit) the phason strain 
field correlator in (3) can be found using the free energy 

F = c  Y~ {~(Vh(x, z), KVh(x, z)) 
z 

Kz } + ~ c  2 [h(x, z +  1 ) - h ( x ,  z)] 2 d2x (4) 

The first term is the quadratic form consistent with the symmetry of the 
tiling. (1'2) If Kz is nonzero, the phason correlator in (3) is finite. This fact 
becomes especially obvious if one substitutes the second term in (4) by its 
continuous analog Kz(C h/Oz)2/2, c7) 

( [h(x ,  z ) -h (O,  0)] 2 ) 

(1 - e iqx + iqzZ) 
= T. const | dZq dqz < oe 

d (q, Kq) + K , q  2 
(5) 

Therefore, 6-function peaks at q = QIt arise. They fill the planes q~ = 2rcm/c 
everywhere densely. 

According to Elser's random tiling hypothesis, (1) in the random tiling 
limit the quadratic form (Vh, K Vh) is positive definite and linear in T. In 
other words, the first term in (4) arises from the random tiling entropy. The 
second term tries to make neighboring layers similar (Kz is supposed to be 
positive) and is due to the layer-layer interaction energy. In the random 
tiling limit the energy is negligible in comparison with T S ( S  denotes the 
entropy). So, in the random tiling limit K z vanishes. With Kz = 0 the phason 
correlator becomes 

( [h(x, z) - h(O, 0)] 2 ) = 2 (h  2 ) = 2v ln (L/a)  (6) 

where a is a typical lattice spacing and v a temperature-independent 
constant of order 1 that can easily be calculated if the specific form of 
the entropic quadratic form in (4) is given. The correlator (6) turns out 
to be 2(h2) .  This is in an agreement with the fact that the layers 
are uncorrelated when the interlayer coupling constant Kz is zero. The 
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expression (6) diverges with the system size L, but only logarithmically. 
Substituting (6) into (3), one sees that the peaks are still 6-functions: 

Im, x =I (0)  OC L ~ ( L x L y )  2- ' /2 oc L 6-~, q = vQ~ (7) 

I(q) oc m a x ( L ~ ( L x L y )  t-'7/2, L z L x L y  ) oc max(L 4-~, L 3) (8) 

The L 3 term is the intensity of the diffuse background. The ratio I~ax/I(q ) 
scales as L 2 for peaks with t /< 1, and as L 3 ' for 1 < q < 3. This is why I 
called the peaks 6-functions (there is no proper term for such peaks in the 
literature). One has to remember that they are &-functional in the sense 
that their widths tends to zero as L tends to infinity. However, in contrast 
with the conventional &-peaks, /max scales not as L 6, but as L 6-~. Both (7) 
and (8) are only valid for peaks with not too big a Q• i.e., for 
q = vQ 2, < 3; otherwise, there is no peak at all. Therefore, the peaks do not 
fill the sheets qz = 2rcm/c everywhere densely. 

At first glance one might conclude that Eqs. (7), and (8) can be 
obtained from the free energy (3) with the second term omitted (Kz=0).  
However, the first, entropic term in (3) is invariant under the transforma- 
tion h(x, z)--, h(x, z ) +  H(z). So, the correlators of H(z)'s and, therefore, 
of h(x, z)'s cannot be found unambiguously from the free energy (3) con- 
taining only the first term. 3 Retaining small but nonzero Kz in Eq. (3) 
allows one to find 

( [H(z ' )  - H(z)]  2 ) = const. Iz' - z l / (K~LxLy)  (9) 

One has to remember that in real quasicrystalline materials the random 
tiling limit is never achieved, and therefore K~ may be arbitrary small, 
but it remains nonzero. So, the denominator in (9) is extremely large. This 
physical argument establishes the following order of limits: first one has to 
put LxLy  ~ oo in (9), then find the correlator of the H(z)'s and use it to 
obtain the correlator of the h(x, z)'s. Finally, one can put Kz = 0, which 
gives Eq. (6). 

It is instructive to compare the diffracted intensities (7) and (8) which 
correspond to the case of uncorrelated phason fields in different layers with 
the diffraction intensities of a quasicrystal built by stacking identical copies 
of a two-dimensional random tiling. In this case h(x, z) = h(x, 0) and the 
correlator becomes 

( [h(x, 0) - h(0, 0)] 2 ) = 2v ln(x/a)  (lo) 

3 I thank C. L. Henley for pointing out this subtle but important point. 
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Substituting (10) into (3) gives a well-known result, namely, that the peaks 
are no longer 3-functions, but decay as a power law(2): 

I(q) ~ L~(L~Ly)tq- QiiI ~"-2), q=vQ~ 
Imax = 1(0) OC L2(L~Ly) 2-"/2 oc L 6-~ 

(11) 

This formula is valid only for peaks with not too big a Q• i.e., for 
q = vQ~ < 2; else, there is no peak at all. Note that the maximal intensity 
scales by the same law as in the uncorrelated case (7). 

One may try to distinguish between the correlated and the 
uncorrelated cases experimentally by measuring peak profiles, looking for 
the presence or absence of the power-law tails. However, phonons may 
produce power-law tails of a similar kind. One needs to separate them 
carefully. There is another, straightforward possibility to check whether the 
system is periodic or not: to make an HREM image of the X Z  or 
YZ plane. Although many valuable experiments on the decagonal phase 
have been carried out (see refs. 8-12 and references therein), none of them 
has questioned the stacking periodicity. 

The obtained result looks a bit surprising: a less correlated system has 
sharper diffraction peaks. Nevertheless, this fact does not contradict any 
fundamental principle. By qualitative reasoning one might mistakenly 
conclude that the absence of correlations between layers results in random 
phases destroying the Bragg diffraction. However, one has to take into 
account that the only existing randomness is associated with the phason 
mode. According to Elser's random tiling hypothesis, I1) the most probable 
configuration is the configuration with no phason strain at all. So, the 
tilings in all the layers are close to this most probable tiling, which is 
known to be symmetric (octagonal, decagonal, or dodecagonal). Therefore, 
even without imposed interlayer correlations the material becomes close to 
Z-periodic on the average due to the phason fluctuations in the layers. 
Nevertheless, the layers differ from one another and the material is not 
periodic microscopically. This closeness to periodicity on the average 
may also be responsible for the fact that high-resolution electron 
micrograms (s'9) exhibit symmetric quasiperiodic patterns. 

The present result helps to apply the random tiling hypothesis to real 
alloys. The classic random tiling approach (1-6) deals with tilings of a plane, 
whereas real "two-dimensional" quasicrystals/8 12) are layered materials. In 
general (not necessarily in the random tiling limit) the interlayer coupling 
is described by Eq. (4). Three cases should be distinguished: Kz=0  
(uncorrelated layers), Kz = ~ (exact periodicity along z), and finite Ks. As 
has been already mentioned, K~ arises from the layer-layer interaction 



400 Burkov 

energy, whereas K may be deduced from the tiling configurational 
entropy.~l 6) A natural generalization of the random tiling hypothesis to 
layered structures is to neglect all energetic contributions, including the 
second term in Eq. (4). This explains my interest in the case of Kz = 0. 
However, nobody knows for sure whether or not nature has chosen 
entropy to stabilize real quasicrystals. Therefore, two other cases deserve to 
be considered. The diffraction intensities for the periodic stacking (K~ = ~ )  
are given by Eq. (11). However, Z-periodicity is incompatible with the 
entropic stabilization. In fact, the entropy of such a Z-periodic structure 
would simply equal the entropy of the in-plane random tiling which would 
scale proportionally to LxLy. Any energy associated with the structure 
would scale as L 3 and thus would not be negligible in comparison with the 
entropy. However, if the layers were uncorrelated (Kz=0) the entropy 
would simply be the in-plane entropy multiplied by Lz. Thus, the entropy 
of the layered system would scale as L 3 and could therefore dominate over 
the energy. The case of finite, nonzero Kz (regardless of the Kz origin: from 
coupling energy, growth algorithms, conditional probabilities, etc/7)) is 
rather trivial: the free energy scales as L 3, allowing entropic stabilization 
and, according to Eq. (5), the peaks are true 6-functions. The phason 
degree of freedom would manifest itself in phason Debye-Waller factors 
exp(-BQ2/4) with B routinely found from Eqs. (3)-(5): 

( ,12, B = ~ - ~  2 In l+~a2/+(KK~),/2tg 'L\-k--~-c2 ] j j  

If Kz ~ 0, the coefficient B increases indefinitely, but only logarithmically: 

a2T [ ln /  Kc2\ 2] 
B=4  + 

(13) 

The intensities of true 6-peaks become zero at K~ = 0, which does not mean 
disappearance of the peaks. It only means that the intensities of conven- 
tional 6-peaks, i.e., those scaled as L 6, vanish. At Kz=0 the maximal 
intensity scales anomalously, as L 6 - ' t  [Eq. (7)]. 
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